Turunan Fungsi | Bimbel Jakarta Timur

Articles/pictures/videos in various disciplines such as mathematics, science and computational science. Explore advanced logical thinking, conceptual ability,  and enhance students understanding of science and mathematics, primary education, secondary education, higher education, teacher education,  and non-formal education

                                                                            

slider

Navigation

Turunan Fungsi

contoh soal turunan fungsi turunan fungsi khusus rumus turunan fungsi turunan fungsi aljabar pdf contoh turunan fungsi aljabar turunan fungsi aljabar
Bimbingan Belajar,Ilmu Pengetahuan,
y adalah fungsi dari x atau y=f(x), turunan fungsi dinotasikan sebagai y' atau f ‘(x) atau dy/dx
Maka turunan fungsi y=f(x) terhadap x didefinisikan sebagai :
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
Rumus 1
TURUNAN FUNGSI ALJABAR






A. Definisi

Untuk y adalah fungsi dari x atau y=f(x), turunan fungsi dinotasikan sebagai y' atau f ‘(x) atau dy/dx
Maka turunan fungsi y=f(x) terhadap x didefinisikan sebagai :


Contoh :
Jika f (x)=x2 – 3x, maka turunan fungsi f (x)adalah

Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
Rumus 2


B.      Rumus Dasar Turunan

  1. ·        Turunan fungsi konstan k. Jika f(x)=k, maka  f ‘(x)=0
  2. ·        Jika f(x)=ax, maka f ‘(x)=a
  3. ·        Jika f(x)=axn, maka f ‘(x)=anxn-1
  4. ·        Jika f(x)=u(x) + v(x), maka f ‘(x)=u’(x) + v’(x)
  5. ·        Jika f(x)=u(x) . v(x), maka f ‘(x)=u’(x) .v(x) + v’(x) . u(x)
·       6.               Jika f(x)=u(x) 
                    v(x)
                   maka f ‘(x)= u’(x) . v(x) + v’(x) . u(x)
                                                   [v(x)]²


·                 7.        Jika f(x)=[u(x)]n, maka f‘(x)=n [u(x)]n-1.u’(x)
·                 8.   Turunan fungsi komposisi (dalil rantai)
              Jika y=f(g(x)), maka  =dy  = dy .dg
                         dx     dg   dx


TURUNAN FUNGSI TRIGONOMETRI



  • Jika f(x)=sin x, maka f’(x)=cos x
         dan jika f(x)=sin u(x), makaf’(x)=u’(x). cos u(x)

  • Jika f(x)=cos x, maka f’(x)=-sin x
        dan jika f(x)=cos u(x), makaf’(x)=-u’(x). sin u(x)
  •  Jika f(x)=tan x, maka f’(x)=sec2x
PERSAMAAN GARIS SINGGUNG DAN GARIS NORMAL KURVA

  • ·        Gradien garis singgung kurva di titik (x1,y1)pada kurva f(x) adalah m=f’(x1)


Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
Gradien


          Persamaan garis singgung kurva
          y – y1=m (x – x1)
·         
  •     Garis normal kurva adalah suatu garis yang tegaklurus dengan garis singgung kurva di titik yang sama dengan titik singgungkurva.

Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
Kurva

·                    Gradiengaris normal kurva di titik (x1,y1) pada kurva f(x)                          
a           adalah mn=-1/f'(x)  
·                           Persamaan garis normal kurva
        y – y1=mn (x – x1)


FUNGSINAIK, FUNGSI TURUN DAN NILAI STASIONER

  • ·        Fungsi naik

Suatu fungsi dikatakan naik dalam suatuselang untuk x1 < x2 maka f(x1) < f(x2)
kurva naik jika f’(x) > 0
  • ·        Fungsi turun

Suatu fungsi dikatakan turun dalam suatuselang untuk x1 < x2 maka f(x1) > f(x2)
kurva naik jika f’(x) < 0
  • ·        Nilai dan titik stasioner

Jika fungsi f(x) mempunyai turunan pada x=a dan f’(a)=0, maka f(a) merupakan nilai stasioner fungsi f(x)

Jika f’(a)=0, maka titik stasioner fungsiadalah (a, f(a))
·        Jenis nilai stasioner dimana f”(x) adalahturunan kedua fungsi f(x)

Jika f”(a) < 0, maka f(a) berjenismaksimum

Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
Kurva 2



Jika f”(a) > 0, maka f(a) berjenis minimum


Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
Kurva 3


Jika f”(a)= 0, maka (a, f(a)) adalah titik belok

Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
Kurva 4
  
                                                                          
CONTOH SOAL DAN PEMBAHASAN

    1. Turunan pertama dari fungsi f(x)=4x3 -3x2 + 8x -5 adalah….

          Pembahasan:
        f’(x)  =4.3.x3-1 – 3.2.x2-1+ 8.1 x1-1 -5.0.x0-1
               =12x2 – 6x1 + 8x0 – 0
               =12x2 – 6x + 8
     2.  Turunan pertama dari fungsi y=(3x2+2) (2x -5) adalah…

         Pembahasan:
       misal u(x)=3x2 +2,  u’(x)=6x
       v(x)=2x -5,    v’(x)=2
       maka y’=u’(x) . v(x) + v’(x) . u(x)
                  =6x (2x – 5) + 2 (3x2+2)
                  =12x2 – 30 x + 6 x2+ 4
                  =18x2 – 30x + 4   
                                         
     3. Turunan pertama dari  dari y=(5x2 +3 x)3adalah…

           Pembahasan:
         misal u(x)=(5x2 +3x),  u’(x)=10x + 3
            y=[u(x)]n
            maka y' =n [u(x)]n-1.u’(x)
    = 3(5x2 +3x)2(10x + 3)
    =  (30x + 9)(5x2 +3x)2

1.                  4.  Turunan pertama dari fungsi y=∛(6x+5) adalah…

         Pembahasan:
 y=(6x + 5)1/3,u(x)=6x=5, u’(x)=6
 y’=1/3 (6x + 5)-2/3(6)
    =2(6x + 5)-2/3
    =     2       
       ∛(6x+5)²

5. Turunan pertama dari fungsi f(x)=3x + 2 adalah…
                                                    x - 1

                    Pembahasan:
            u(x)=3x+2, u’(x)=3
            v(x)=x-1,    v’(x)=1


     maka f ‘(x)= u’(x) . v(x) - v’(x) . u(x)
                                                     [v(x)]²
                                =3(x-1) - 1(3x+2) 
                                           (x-1)²
                                =   -5    
                                     (x-1)²
             6.  Persamaan garis singgung para bola y=x2+ 4x -5 
                 pada titik (-1,2) adalah…
                Pembahasan:
             y’=2x + 4
             m=2(-1) + 4=2
             persamaan garis singgung
             y – 2=2 (x –(-1))
             y – 2=2x + 2
             y=2x + 4

2.                    7.   Persamaan garis normal kurva y=x3-4x2+ 5x-2 
                 pada titik (2,-5) adalah…
                Pembahasan:
             y’=3x2- 8x + 5=3(2)2– 8(2) + 5=1
             mn=-1/y’=-1/1=-1
             persamaan garis normal
             y – (-5)=-1(x-2)
             y + 5=-x + 2
             y=-x -7

3.                          8.   Fungsi f(x)=x2 – 9x naikpada interval…
                Pembahasan:
             fungsi naik jika f’(x) > 0 , 
             maka 2x –9 > 0
             jadi fungsi naik pada x > 4,5

4.                     9.   Tentukan nilai stasioner dari fungsi f(x)=2x3 – 15x2 +36x – 10 !
                 Pembahasan:
              titik stasioner dicapai jika f’(x)=0
              6x2 -30x + 36=0
              6 (x -2) (x-3)=0
              x1=2, x2=3
              Nilai stasioner didapat
              f(2)=18 dan
              f(3)=17

          10. Tentukan turunan pertama dari y=sin³(2x+3)
               Pembahasan :
               y'=3sin²(2x+3).cos(2x+3) (2)
                  =6sin²(2x+3).cos(2x+3)
Share
Banner

Diah Kusumastuti

Saya Diah Kusumastuti. sebagai pemilik Bimbel Jakarta Timur. Saya pecinta matematika, tetapi juga tertarik untuk ilmu pengetahuan lain seperti Fisika, Kimia, Biologi. Semakin kita belajar dan menggali ilmu semakin kita menyadari betapa luas ilmu Allah sekaligus membuat kita semakin ingin mengeksplor lebih banyak. Dengan blog ini saya ingin berbagi sedikit ilmu yang saya punya dan untuk terus membangkitkan semangat belajar para pembaca. Semoga apa yang saya tulis dalam blog ini dapat bermanfaat bagi yang membaca, juga menjadi tambahan ilmu dan amal jariah bagi saya.

Post A Comment:

0 comments:

Terimakasih atas komentar yang sopan, bijak, dan koreksinya (bilamana ada kesalahan, karena saya hanya manusia biasa yang tidak luput dari kesalahan) ^_^