Latihan Soal Persamaan Kuadrat | Bimbel Jakarta Timur

Articles/pictures/videos in various disciplines such as mathematics, science and computational science. Explore advanced logical thinking, conceptual ability,  and enhance students understanding of science and mathematics, primary education, secondary education, higher education, teacher education,  and non-formal education

                                                                            

slider

Navigation

Latihan Soal Persamaan Kuadrat

Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
Setelah kita pelajari materi Persamaan Kuadrat, kita memerlukan soal-soal latihan untuk melatih pemahaman kita.



Berikut ini kami sajikan beberapa soal dengan pembahasannya untuk kamu pelajari.


1. Perhatikan persamaan-persamaan berikut!
   (i) 2x2 – 5=0
   (ii) 2x2 + 3x3=0
   (iii) 3x + 6=0
   (iv) 3x2 + 5x + 9=0
Yang merupakan persamaan kuadrat adalah…
a. (i) dan (ii)                 
b. (i) dan (iii)                
c. (ii) dan (iv)
d. (i) dan (iv)


Pembahasan:
Persamaan kuadrat adalah persamaan yang sukunya memiliki pangkat tertinggi 2.

d. (i) dan (iv)

2. Persamaan 2x (x + 5)=3x – 4 jika diubah ke bentuk umum persamaan kuadrat adalah…
a. 2x2 – 7x + 4=0          
b. 2x2 + 7x + 4=0       
c. – x2 + 7x + 4=0
d. x2 – 7x + 4=0


Pembahasan:
2x (x + 5)=3x – 4 
2x2 + 10x=3x – 4
2x2 + 10x – 3x + 4=0

2x2 + 7x + 4=0

3.Faktor dari 3x2 – 6x=0 adalah…
a. 3x(x – 3)=0             
b. 3x(x – 2) =0             
c. 3(x2 – 2)
d. 3(x2 – 2x)


Pembahasan:
3x2 – 6x   = 0 kedua suku bisa dibagi 3x

3x (x – 2)=0

4. Salah satu faktor dari x– 7x + 12  adalah…
a. x – 2                         
b. x – 3                         
c. x + 3
d. x + 4


Pembahasan:
x2 – 7x + 12=0
a + b=-7 dan axb=12
a=-3 dan b=-4

(x – 3) (x – 4) 

5. Nilai diskriminan dari persamaankuadrat 2x2 – 3x – 5  = 0 adalah….
a. – 31       
b. 20        
c. 29          
d. 49


Pembahasan:
2x2 – 3x –5  =0
a = 2, b = -3, c = -5
D = b2 – 4.a.c
    = (-3)2 – 4(2)(-5)
    = 9 + 40
    = 49

6. Agar persamaan kuadrat 4x2– 12 x + p = 0 memiliki akar kembar, maka nilai p=…
a. – 9         
b. – 3          
c. 3          
d. 9


Pembahasan :
4x2 –12 x + p=0
a=4, b=-12, c=p

akar kembar maka D=0
b2– 4.a.c        =0
(-12)2– 4(4)p=0
144 –16p      =0
- 16 p             = - 144
p                     =- 144 : - 16

p                     = 9

7. Jika salah satu akar dari persamaan kuadrat x2 + 3 x + c=0 adalah 2, maka nilai c yang memenuhi adalah…
a. – 10         
b. – 5          
c. 5          
d. 10


Pembahasan:
substitusi nilai 2 ke persamaan x2 +3 x + c=0

22 + 3(2) + c=0
4   + 6     + c=0
10           + c=0

                   c=-10

8. Jika salah satu akar daripersamaan kuadrat x2 + bx – 24=0 adalah – 3, maka nilai akar yang lain adalah….
b. – 8          
b. – 5         
c. 8            
d. 10


Pembahasan:
substitusi nilai -3 ke persamaan x2 +bx – 24=0

-32 + b(-3) - 24=0
9  – 3b    – 24  =0
    - 3b               =24 – 9
   - 3b               =15
        b                =15 : -3
        b                =- 5

Persamaannya menjadi x2 –5x  – 24=0
(x + 3) (x – 8 )=0
             x – 8    =0

             x         =8

9. Bentuk kuadrat sempurna dari x2-6x + 8=0 adalah….
a. (x – 3)2=  - 17                 
b. (x – 3)2=- 8               
c. (x – 3)2  =1 
d. (x – 3)2  =8


Pembahasan:
x2 -6x + 8     =0
x2 -6x            =  -8
x2 -6x + (-3)2=  - 8 + (-3)2
(x – 3)2         =-8 + 9

(x – 3)2         =1


10. Akar – akar persamaan kuadrat x2– 11x + 30 =0 adalah….
a. real dan berbeda      
b. real dan sama           
c. tidak real
d. tidak dapat ditentukan 


Pembahasan:
x2 – 11x + 30=0
a=1, b=- 11 dan c=30

D= b2 – 4.a.c
  =(-11)2 –4(1)(30)
  =121 – 120
  =1


karena D > 0, maka akar-akarnyareal dan berbeda

11. Bentuk penyelesaian dengan rumusuntuk persamaan kuadrat 2x2 – 7x + 5=0 adalah….
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990

       















Pembahasan : 
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990




















12. Akar-akar persamaan 3x2– 75=0 adalah….
a. 3 dan 25                      
b. 3 dan – 25                   
c. 3 dan -5
d. -5 dan 5

Pembahasan:
3x2 – 75     =0 kedua suku bisa dibagi 3
3 (x2 – 25)=0  a2 – b2=(a+b) (a – b)
3 (x+5) (x – 5)=0
x + 5=0 dan x – 5=0

x=- 5     dan x=5

13. Perhatikan persamaan-persamaan berikut
(i) x2 + 3x – 54=0
(ii) x2 – 8x + 16=0
(iii) 2x2 + 5x + 11=0
(iv) 3x2 – 7x + 4=0
Persamaan kuadrat yang mempunyai akar real adalah….
a. (i) dan (iii)                    
b. (i) dan (iv)                    
c. (i), (ii) dan (iii)
d. (i), (ii) dan (iv)


Pembahasan:
(i) x2 + 3x – 54=0
D=32 – 4(1)(-54)
  =9 – (- 216)
  =225
D > 0, akar real berbeda

(ii) x2 – 8x + 16=0
D=(-8)2 – 4(1)(16)
  =64 – 64
  =0
D=0. akar real kembar

(iii) 2x2 + 5x + 11=0
D=52 – 4(2)(11)
  =25 – 88
  =- 63
D < 0, akar tidak real

(iv) 3x2 – 7x + 4=0
D=(-7)2 – 4(3)(4)
  =49 – 48
  =1

D > 0, akar real berbeda

 d. (i), (ii) dan (iv)


14. Persamaan kuadrat x2– 9x + m=0 memiliki akar- akar α dan β. Jika α=2β, maka nilai m adalah….
a. – 18          
b. -6              
c. 6              
d. 18


Pembahasan:
x2 – 9x + m=0, α =2β
α + β  =-b/a=9
2β + β=9
3β       =9
β         =9 : 3
           =3
α =2β
  =2(3)
  =6

c/a   =αβ
m/1=(3)(6)

m     =18


15. Akar-akar persamaan kuadrat dari persamaan x2 + 2x – 35=0 adalah….
a. – 5 dan – 7                 
b. – 5 dan 7                    
c. 5 dan – 7
d. 5 dan 7

Pembahasan :
x2 + 2x – 35=0
(x+7) (x-5) =0
x+7=0 dan x-5=0
x=-7 dan x=5

16. Akar-akar persamaan kuadrat x2 – 4x + 1=0 adalah….
a. - √3 dan √3                
b. 1 - √3 dan 1 - √3       
c. 2 - √3 dan 2 + √3
d. 3 - √3 dan 3  - √3

Pembahasan :
x2 – 4x + 1     =0
x2 – 4x         =-1
x2 – 4x +(-2)²=-1 + (-2)²
(x - 2)²         =3
(x - 2)           =± √3
x -2=-√3 dan x - 2=√3
x=2 - √3 dan x=2 + √3

17. Jika akar-akar persamaan kuadrat 2x2+ 5x -3=0 adalah x1 dan x2, maka nilai x1 –x2 adalah….
a. 2,5         
b. 2,75         
c. 3,25          
d. 3,5

Pembahasan :
2x2 + 5x -3=0
a=2, b=5 dan c=-3


Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990



















18. Jumlah kuadrat akar-akar persamaan kuadratdari x2 + x – 3=0 adalah…
a. -7          
b. -1             
c. 1                
d. 7

Pembahasan : 
Misalkan akar-akar persamaan x2 + x – 3=0 adalah ∝ dan β, maka jumlah kuadrat akar-akarnya adalah ∝² + β²

Tentukan dulu nilai  + β dan β
 + β=-b/a
       =-1/1 
       =-1
β=c/a
   =-3/1
   =-3

∝² + β²=( + β)² - 2 β
           =(-1)² - 2(-3)
           =1 + 6
           =7

19. Akar-akar persamaan kuadrat x2 + 5x + (p+2)=0 adalah α dan β. Jika α=2β + 1, maka nilai p adalah….
a. 4           
b. 6              
c. – 2              
d. – 5

Pembahasan :
       α + β=-b/a
2β + 1 + β=-5/1
3β + 1     =-5
3β           =-5 - 1
3β           =-6
  β           =-6 : 3
  β           =-2

α=2β + 1
   =2(-2) + 1
   =-4 + 1
   =-3

αβ     =c/a
-3(-2)=(p+2)/1
6       =p+2
6 - 2   =p
4       =p

20. Himpunan penyelesaian dari persamaankuadrat 2x2 – x - 15=0 adalah….
a.{5/2, 3}     
b. (-5/2, 3}      
c. (-3/2, 5)    
d. (3/2, 5}

Pembahasan :
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990



















21. Persamaan kuadrat yang akar-akarnya adalah 3 dan 1/3 adalah….
a. x2 – x + 3=0             
b. x2 + x + 3=0             
c. 3x2 – x + 3=0
d. 3x2 – 10x + 3=0

Pembahasan :
α=3 dan β=1/3
α+β=3 + 1/3
     =10/3
αβ   =3.1/3
     =1

Persamaan kuadrat
x2 – (α+β)x + αβ=0
x² - (10/3)x + 1=0 
semua suku dikali 3 agar jawaban tidak berbentuk pecahan
3x2 – 10x + 3=0

22. Persamaan kuadrat yang akar-akarnya 3 - √2 dan 3 + √2  adalah….
a. x2 – 3x + 2=0           
b. x2 + 6x + 7=0           
c. x2 – 6x + 7=0
d. x2 – 6x + 11=0

Pembahasan :
α= 3 - √2 dan β= 3 + √2
α + β= 3 - √2 + 3 + √2
       =6
αβ     =(3 - √2) (3 + √2)
       =9 - 2
       =7

Persamaan kuadrat
x2 – (α+β)x + αβ=0
x2 – 6x + 7 =0

23. Persamaan kuadrat 4x2 – (m+3)x+ m=0 memiliki akar real yang kembar. Nilai m yang memenuhi adalah…
a. -1 dan -9                 
b. -1 dan 9                  
c. 1 dan -9
d. 1 dan 9

Pembahasan : 
a=4, b=- (m+3) dan c=m
akar real kembar jika D=0
b² - 4.a.c=0
[-(m+3)]² - 4(4)(m)=0
m² + 6m + 9 - 16m=0
m² - 10m + 9=0
(m-1) (m-9)=0
m-1=0 dan m-9=0
m=1    dan m=9

24. Persamaan kuadrat baru yang akar-akarnya 2 lebihnya dari akar-akar persamaan x2 + 5x + 2=0 adalah…
a. x2 + x – 4=0                  
b. x2 – x + 4=0                  
c. x2 + 7x + 4=0
d. x2 + 7x + 8=0

Pembahasan :
Misal akar-akar persamaan x2 + 5x + 2=0 adalah α dan β
α+β=-b/a
     =-5
αβ   =c/a
     =2

akar-akar persamaan baru adalah (α+2) dan (β+2), maka
(α+2) + (β+2)= α+β +4
                   =-5 + 4
                   =-1

(α+2) (β+2)= αβ +2(α+β) + 4
                 =2 + 2(-5) + 4
                 =2 - 10 +4
                 =- 4

Persamaan baru 
x² - (-1)x + (-4)=0
x² + x - 4=0 


                
25. Sebuah segitiga siku-siku mempunyai panjang sisi (x – 7) cm, x cm dan (x + 1) cm. Panjang sisi terpendek segitigatersebut adalah…

a. 3 cm         
b. 5 cm         
c. 7 cm         
d. 9 cm

Pembahasan :
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990















Dari gambar di atas bisa kita lihat bahwa sisi terpendek adalah (x-7) cm dan sisi terpanjang yang merupakan hipotenusa segitiga siku-siku adalah (x+1) cm.

Menurut dalil phytaghoras adalah
              x² + (x-7)² =(x+1)²   
       x² + x²-14x +49= x²+2x+1 
2x²-x²-14x-2x +49 -1=0
           x² - 16x + 48=0
          (x -12) (x - 4)=0
x - 12=0 dan   x - 4=0
x=12       dan  x=4

Sisi terpendek adalah x -7
jika x=12 maka x - 7=12-7=5

jika x=4 maka x - 7=4 - 7=-3 tidak memenuhi


Semoga Bermanfaat

Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
Share

Diah Kusumastuti

Saya Diah Kusumastuti. sebagai pemilik Bimbel Jakarta Timur. Saya pecinta matematika, tetapi juga tertarik untuk ilmu pengetahuan lain seperti Fisika, Kimia, Biologi. Semakin kita belajar dan menggali ilmu semakin kita menyadari betapa luas ilmu Allah sekaligus membuat kita semakin ingin mengeksplor lebih banyak. Dengan blog ini saya ingin berbagi sedikit ilmu yang saya punya dan untuk terus membangkitkan semangat belajar para pembaca. Semoga apa yang saya tulis dalam blog ini dapat bermanfaat bagi yang membaca, juga menjadi tambahan ilmu dan amal jariah bagi saya.

Post A Comment:

4 comments:

  1. bagus nih soal soalnya sangat membantu... terima kasih

    ReplyDelete
  2. SUPRA ~ SMP PGRI KRAMATWATU, sama-sama... semoga bermanfaat

    ReplyDelete
  3. bagus. tapi mau copy atau download ndak bisa hhhh

    ReplyDelete
    Replies
    1. Terimakasih, maaf baru dibalas berhubung baru sekarang bisa memulai fasilitas reply comment, mungkin karena terhalang script iklan, bisa di coba dengan ctrl-p, kemudian save to pdf

      Delete

Terimakasih atas komentar yang sopan, bijak, dan koreksinya (bilamana ada kesalahan, karena saya hanya manusia biasa yang tidak luput dari kesalahan) ^_^