Soal Persamaan Trigonometri Sederhana | Bimbel Jakarta Timur

Articles/pictures/videos in various disciplines such as mathematics, science and computational science. Explore advanced logical thinking, conceptual ability,  and enhance students understanding of science and mathematics, primary education, secondary education, higher education, teacher education,  and non-formal education

                                                                            

slider

Navigation

Soal Persamaan Trigonometri Sederhana

 


Persamaan trigonometri adalah persamaan yang memuat fungsi perbandingan sudut yang belum diketahui baik dalam besaran derajat ataupun radian. Untuk masing-masing perbandingan sudut yaitu sinus, cosinus dan tangen terdapat rumus dalam menyelesaikan persamaan trigonometri sederhananya seperti yang termuat dalam tabel berikut:


Berikut adalah contoh soal dan pembahasan persamaan trigonometri sederhana

1. Tentukan himpunan penyelesaian dari sin x = 0,5, untuk 0°≤ x ≤ 360° !

Pembahasan:

sin x = 0,5, maka

sin x = sin 30°, 𝞪 = 3

➢ x = 30° + k.360° 

k = 0

x = 30° (memenuhi)

k = 1

x = 30° + 360° = 390° (tidak memenuhi karena > 360°)

➢ x = 180° - 30° + k.360° = 150° + k.36

k = 0

x = 150° (memenuhi)

k = 1

x = 150° 360° = 510° (tidak memenuhi karena > 360°)

HP = {30°, 150°}


2. Himpunan penyelesaian dari sin 2x = ½√3 untuk 0°≤ x ≤ 2𝝅 adalah...

Pembahasan:

sin 2x = ½√3, maka

sin 2x = sin 𝝅/3, 𝞪 = 𝝅/3

➢ x =  𝝅/3 + k.2𝝅

k = 0

x =  𝝅/3 (memenuhi)

k = 1

x = 𝝅/3 + 2𝝅  (tidak memenuhi karena > 2𝝅)

➢ x = 𝝅 - 𝝅/3 + k.2𝝅 = ²/₃𝝅 + k.2𝝅

k = 0

x = ²/₃𝝅 (memenuhi)

k = 1

x = ²/₃𝝅 + 2𝝅 (tidak memenuhi karena > 2𝝅)

HP = {¹/₃𝝅, ²/₃𝝅}


3. Himpunan penyelesaian dari cos 3x = ½√2 untuk 0°≤ x ≤ 180° adalah....

Pembahasan:

cos 3x = ½√2, maka

cos 3x = cos 45°, 𝞪 = 45°

➢ 3x = 45° + k.360° 

k = 0

3x = 45°

x = 15° (memenuhi)

k = 1

3x = 45° + 360° = 405° 

x = 135°

k = 2 

3x = 45° + 720° = 765° 

x = 255° (tidak memenuhi karena > 180°)

➢ 3x = - 45° + k.360° 

k = 0

3x = -45° (tidak memenuhi karena < 0)

k = 1

3x = -45° 360° = 315° 

x = 105° (memenuhi)

k = 2

3x = -45° + 720° = 675°

x = 225° (tidak memenuhi karena > 180°)

HP = {15°, 135°, 315°}


4. Himpunan penyelesaian dari 2cos 2x - 1 = 0 untuk 0°≤ x ≤ 2𝝅 adalah...

Pembahasan:

2cos 2x - 1 = 0

2cos 2x = 1

cos 2x = 1/2

cos 2x = cos 𝝅/3, 𝞪 = 𝝅/3

➢ 2x =  𝝅/3 + k.2𝝅

k = 0

2x =  𝝅/3 

x = 𝝅/6 (memenuhi)

k = 1

2x = 𝝅/3 + 2𝝅 = 2¹/₃𝝅 

x = 1¹/₆𝝅 (memenuhi)

k = 2 tidak memenuhi karena hasilnya > 2𝝅

➢ 2x = - 𝝅/3 + k.2𝝅 = ²/₃𝝅 + k.2𝝅

k = 0

2x = - ²/₃𝝅 (tidak memenuhi karena < 0)

k = 1

2x = -²/₃𝝅 + 2𝝅 = ⁴/₃𝝅

x = ²/₃ 𝝅 (memenuhi)

HP = {¹/𝝅, ²/₃𝝅, 1¹/₆𝝅}


5. Tentukan himpunan penyelesaian dari 2sin²x - 1 = 0, untuk 0°≤ x ≤ 360° !

Pembahasan:

2sin²x - 1 = 0

2sin²x = 1  

sin²x = 1/2

sin x = ½√2

sin x = sin 45°, 𝞪 = 45°

➢ x = 45° + k.360° 

k = 0

x = 45° (memenuhi)

k = 1

x = 45° + 360° = 405° (tidak memenuhi karena > 360°)

➢ x = 180° - 45° + k.360° = 135° + k.36

k = 0

x = 135° (memenuhi)

k = 1

x = 150° 360° = 510° (tidak memenuhi karena > 360°)

HP = {45°, 135°}


6. Tentukan himpunan penyelesaian dari tan²x - 3 = 0, untuk 0°≤ x ≤ 360° !

Pembahasan:

tan²x - 3 = 0

tan²x = 3 

tan x = √3

tan x = tan 60°, 𝞪 = 60°

➢ x = 60° + k.18

k = 0

x = 60° (memenuhi)

k = 1

x = 60° + 180° = 240° (memenuhi)

k = 2 (tidak memenuhi karena > 360°)

HP = {60°, 240°}


7. Himpunan penyelesaian dari 3tan²x - 1 = 0, untuk 0°≤ x ≤ 2𝝅 adalah...

Pembahasan:

3tan²x - 1 = 0

3tan²x = 1 

tan²x = 1/3

tan x = 1/√3

tan x = ¹/₆ 𝝅𝞪 = ¹/₆ 𝝅

➢ x = ¹/₆ 𝝅 + k.𝝅

k = 0

x = ¹/₆ 𝝅 (memenuhi)

k = 1

x = ¹/₆ 𝝅 + 𝝅 = 1¹/₆ 𝝅 (memenuhi)

HP = {¹/₆ 𝝅, 1¹/₆ 𝝅}


8. Himpunan penyelesaian dari 4cos²x - 3 = 0, untuk 0°≤ x ≤ 2𝝅 adalah...

Pembahasan:

4cos²x - 3 = 0

4cos²x = 3

cos²x = 3/4

cos x = ½√3

cos x = cos ¹/₆ 𝝅

➢ x = ¹/₆ 𝝅 + k.2𝝅

k = 0

x = ¹/₆ 𝝅  (memenuhi)

k = 1

x = ¹/₆ 𝝅 + 2𝝅 = 2 ¹/₆ 𝝅 (tidak memenuhi karena hasilnya > 2𝝅)

➢ x = - ¹/₆ 𝝅 + k.2𝝅 

k = 0

x = - ¹/₆ 𝝅 (tidak memenuhi karena < 0)

k = 1

x = -¹/₆ 𝝅 + 2𝝅 = 1 ⁵/₆ 𝝅 (memenuhi)

HP = {¹/₆𝝅, 1⁵/₆ 𝝅}


9. Himpunan penyelesaian dari cos (2x+10)° = cos 40° untuk 0°≤ x ≤ 180° adalah....

Pembahasan:

cos (2x+10)° = cos 40°

➢ 2x+10° =  40° + k.36

k = 0

2x+10° =  40°

2x = 30°

x = 15° (memenuhi)

k = 1

2x+10° =  40° + 36

2x = 39

x = 195° (tidak memenuhi)

➢ 2x+10° =  -40° + k.36

k = 0

2x+10° =  -40°

2x = -50°

x = -25° (tidak memenuhi)

k = 1

2x+10° =  -40° + 36

2x = 31

x = 155° (memenuhi)

HP = {15°, 155°}


10. Himpunan penyelesaian dari sin (x+𝝅/₃) = ½√3 untuk 0°≤ x ≤ 2𝝅 adalah...

Pembahasan:

sin (x+𝝅/) = ½√3

sin (x+𝝅/) = sin 𝝅/

➢ x+𝝅/₄ = 𝝅/₃ + k.2𝝅

k = 0

x+𝝅/₄ = 𝝅/₃

x = 𝝅/₃ - 𝝅/₄

x = ¹/₁₂ 𝝅 (memenuhi)

k = 1

x+𝝅/₄ = 𝝅/₃ + 2𝝅

x = 2¹/₁₂ 𝝅 (tidak memenuhi)

➢ x+𝝅/₄ = 𝝅 - 𝝅/₃ + k.2𝝅

x = ²/₃ 𝝅 - 𝝅/₄ + k.2𝝅

x = ⁵/₁₂ 𝝅 + k.2𝝅

k = 0

x = ⁵/₁₂ 𝝅 (memenuhi)

k = 1, x = 2⁵/₁₂ 𝝅 (tidak memenuhi)

HP = {¹/₁₂ 𝝅, ⁵/₁₂ 𝝅}


11. Himpunan penyelesaian dari sin 3x = cos x, untuk 0°≤ x ≤ 180° adalah....

Pembahasan:

sin 3x = cos x (ingat cos A = sin (90° - A))

sin 3x = sin (90° - x)

➢3x = 90° - x + k.36

4x = 90° + k.36

k = 0

4x = 90°

x = 22,5° (memenuhi)

k = 1

4x = 90° + 36

4x = 45

x = 112,5° (memenuhi)

k = 2

4x = 90° + 72

4x = 810°

x = 202,5° (tidak memenuhi)

➢ 3x = (180 - (90° - x)) + k.36

3x = 90° + x + k.36

2x 90° + k.36

k = 0

2x = 90°

x = 45° (memenuhi)

k = 1

2x = 90° + 36

2x = 45

x = 225° (tidak memenuhi)

HP = {45°, 112,5°, 225°}


12. Nilai x yang memenuhi 2 cos² (x/2) = 1, untuk 0°≤ x ≤ 2𝝅 adalah...

Pembahasan:

cos² (x/2) = 1

  cos² (x/2) = 1/2

  cos (x/2) = ½√2

  cos (x/2) = cos 𝝅/4

➢ x/2 = 𝝅/4 + k.2𝝅

k = 0

x/2 = 𝝅/4

x = 𝝅/2 (memenuhi)

k = 1

x/2 = 𝝅/4 + 2𝝅

x = 2½ 𝝅 (tidak memenuhi)

➢ x/2 = -𝝅/4 + k.2𝝅

k = 0

x/2 = - 𝝅/4 

x = - 𝝅/2 (tidak memenuhi)

k = 1

x/2 = -𝝅/4 + 2𝝅

x = -½ 𝝅 + 4𝝅

x = 3½ 𝝅 (tidak memenuhi)

HP = {𝝅/2}


13. Nilai x yang memenuhi √3 tan 2x = 1, untuk 0°≤ x ≤ 𝝅 adalah...

Pembahasan:

√3 tan 2x = 1

tan 2x = 1/√3

tan 2x = tan 𝝅/6

2x = 𝝅/6 + k.𝝅

k = 0

x = ¹/₁₂ 𝝅 (memenuhi)

k = 1

2x = 𝝅/6 + 𝝅 = ⁷/₆ 𝝅

x = /₁₂ 𝝅 (memenuhi)

k = 2

2x = 𝝅/6 + 2𝝅 = ¹³/₆ 𝝅

x = ¹³/₁₂ 𝝅 (tidak memenuhi)

HP = {¹/₁₂ 𝝅, /₁₂ 𝝅}


14. Himpunan penyelesaian dari cos (2x - 10)° = sin 20°untuk 0°≤ x ≤ 360° adalah....

Pembahasan:

cos (2x - 10)° = sin 20°

cos (2x - 10)° = cos 70°

2x - 10° = 70°

2x = 80° + k.360° atau 2x = -80° + k.360° 

➢ 2x = 80° + k.36

k = 0

2x = 80°

x = 40° (memenuhi)

k = 1

2x = 80° + 36

2x = 440°

x = 220° (memenuhi)

➢ 2x = -80° + k.36

k = 0, x = -40° (tidak memenuhi)

k = 1

2x = -80° + 360° = 28

x = 140° (memenuhi)

k = 2

2x = -80° + 720° = 64

x = 320° (memenuhi)

HP = {40°, 140°, 220°, 320°}


15. Himpunan penyelesaian dari tan (2x +𝝅/6) = 1, untuk 0°≤ x ≤ 𝝅 adalah...

Pembahasan:

tan (2x +𝝅/6) = 1

tan (2x +𝝅/6) = tan 𝝅/₄

2x +𝝅/6 = 𝝅/₄ + k.𝝅

k = 0

2x +𝝅/6 = 𝝅/₄

2x = ¹/₁₂ 𝝅

x = ¹/₄ 𝝅 (memenuhi)

k = 1

2x +𝝅/6 = 𝝅/₄ + 𝝅

2x = ¹/₁₂ 𝝅 + 𝝅 = ¹³/₁₂ 𝝅

x = ¹³/ 𝝅 (memenuhi)

k = 2

2x +𝝅/6 = 𝝅/₄ + 2𝝅

2x = ¹/₁₂ 𝝅 + 2𝝅 = ²⁵/₁₂ 𝝅

x = ²⁵/ 𝝅 (tidak memenuhi)

HP = {¹/₄ 𝝅, ¹³/ 𝝅}


16. Himpunan penyelesaian dari sin 2x = cos 𝝅/6 untuk 0°≤ x ≤ 𝝅 adalah...

Pembahasan:

sin 2x = cos 𝝅/6

sin 2x = sin (𝝅/2 - 𝝅/6)

sin 2x = sin 𝝅/3

➢ 2x 𝝅/₃ + k.2𝝅

k = 0

2x = 𝝅/3

x = 𝝅/6 (memenuhi)

k = 1

2x 𝝅/₃ + 2𝝅 = ⁷/₃ 𝝅

x = ⁷/₆ 𝝅 (tidak memenuhi)

➢ 2x = 𝝅 - 𝝅/₃ + k.2𝝅

2x = ²/₃ 𝝅 + k.2𝝅

k = 0

2x = ²/₃ 𝝅 

x = ¹/₃ 𝝅 (memenuhi)

k = 1

2x = ²/₃ 𝝅 + 2𝝅

x = ¹/₃ 𝝅 + 𝝅 (tidak memenuhi)

HP = {¹/₆ 𝝅, ¹/₃ 𝝅}


17. Himpunan penyelesaian dari 4 sin²x - 4 sin x - 3 = 0, untuk -𝝅 ≤ x ≤ 𝝅 adalah....

Pembahasan:

sin²x - 4 sin x - 3 = 0

(2 sin x - 3) (2 sin x + 1) = 0

2 sin x - 3 = 0 atau 2 sin x + 1 = 0

sin x = 3/2 (tidak memenuhi) atau 

sin x = -1/2

sin x = sin (-𝝅/6)

➢ x = -𝝅/6 + k.2𝝅

k = 0

x = -𝝅/6 (memenuhi)

k = 1

x = -𝝅/6 + 2𝝅 = ¹¹/₆ 𝝅 (tidak memenuhi)

➢ x = 𝝅-𝝅/6 + k.2𝝅

k = 0

x = ⁵/₆ 𝝅 (memenuhi)

k = 1, x = 1⁵/₆ 𝝅 (tidak memenuhi)

HP = {-¹/₆ 𝝅, ⁵/₆ 𝝅}


18. Himpunan penyelesaian dari cos²x - cos x - 1 = 0, untuk 0°≤ x ≤ 360° adalah....

Pembahasan:

cos²x - cos x - 1 = 0

(2 cos x + 1) (cos x - 1) = 0

2 cos x + 1 = 0 atau  cos x - 1 = 0

cos x = -1/2 atau cos x = 1

cos x = cos 120° atau cos x = cos 0°

➢ cos x = cos 120°

x = 120° + k.360°

k = 0, x = 120° (memenuhi)

x = -120° + k.360°

k = 0, x = -120° (tidak memenuhi)

k = 1, x = 240° (memenuhi)

➢ cos x = cos 0°

x = 0° + k.360°

k = 0, x = 0° (memenuhi)

k = 1, x = 360° (memenuhi)

HP = {0°, 120°, 240°, 360°}


19. Himpunan penyelesaian dari cos²x = 2 + sin x, untuk 0°≤ x ≤ 360° adalah....

Pembahasan:

cos²x = 2 + sin x

cos²x - 2 - sin x = 0

2(cos²x - 1) - sin x = 0

-2sin²x - sin x = 0

-sin x (2 sin x + 1) = 0

- sin x = 0 atau 2sin x = -1

sin x = 0 atau sin x = -1/2

sin x = sin 0° atau sin x = sin (-30°)

➢ sin x = sin 0°

x = 0 + k.36

k = 0, x = 0° (memenuhi)

k = 1, x = 360°(memenuhi)

x = 180° + k.360°

k = 0, x = 180° (memenuhi)

k = 1, x = 540° (tidak memenuhi)

➢ sin x = sin(-30°)

x = -30° + k.36

k = 0, x = -30° (tidak memenuhi)

k = 1, x = 330° (memenuhi)

x = 180°-(-30°) + k.360° = 210° + k.36

k = 0, x = 210° (memenuhi)

HP = {0°, 210°, 330°, 360°}


20. Himpunan penyelesaian dari tan x - tan²x = 0, untuk  0 ≤ x ≤ 2𝝅 adalah....

Pembahasan:

tan x - tan²x = 0

tan x (1 - tan x) = 0

tan x = 0 atau 1 - tan x = 0

tan x = 0 atau tan x = 1

➢ tan x = 0

tan x = tan 0

x = 0 + k.𝝅

k = 0

x = 0 (memenuhi)

k = 1

x = 𝝅 (memenuhi)

k = 2

x = 2𝝅 (memenuhi)

➢ tan x = 1

tan x = tan 𝝅/4

x = 𝝅/4 + k.𝝅

k = 0

x = 𝝅/4 = ¹/₄ 𝝅 (memenuhi)

k = 1

x = 𝝅/4 + 𝝅 = 1¹/₄ 𝝅 (memenuhi)

HP = {0, ¹/₄ 𝝅, 𝝅, 1¹/₄ 𝝅, 2𝝅}









Share
Banner

Diah Kusumastuti

Saya Diah Kusumastuti. sebagai pemilik Bimbel Jakarta Timur. Saya pecinta matematika, tetapi juga tertarik untuk ilmu pengetahuan lain seperti Fisika, Kimia, Biologi. Semakin kita belajar dan menggali ilmu semakin kita menyadari betapa luas ilmu Allah sekaligus membuat kita semakin ingin mengeksplor lebih banyak. Dengan blog ini saya ingin berbagi sedikit ilmu yang saya punya dan untuk terus membangkitkan semangat belajar para pembaca. Semoga apa yang saya tulis dalam blog ini dapat bermanfaat bagi yang membaca, juga menjadi tambahan ilmu dan amal jariah bagi saya.

Post A Comment:

0 comments:

Terimakasih atas komentar yang sopan, bijak, dan koreksinya (bilamana ada kesalahan, karena saya hanya manusia biasa yang tidak luput dari kesalahan) ^_^